# **Condition monitoring**

## prevention against damages



## Oil mist detection today



#### Today's appearance of severe damages

Damages to main and aux engines (Source: The Swedish Club main & aux engine report 2018)

- Main engine claims account for 28% of all machinery claims and 34% of the costs, with an average <u>claims cost close to USD 650,000</u>
- Aux engine claims account for 13% of the total machinery claim costs and 16% of the volume, with an average <u>claim cost of USD 345,000</u>
  - The most expensive type of main engine damage is on crank shaft/bearings with an average cost of USD 1.2 million per claim
  - Lubrication oil related failure is the most common cause of damage for main engines
  - Incorrect maintenance and wrongful repair are the most common causes of damage for aux engines; poor lubrication oil management is also a major contributing factor

Oil mist related crankcase explosions: Significance and development

- Key components of the engines face increasing challenges, e.g.:
  - Conflict of oil consumption vs. friction losses for liner and piston bore interface
  - High bearing loads and the conflict of stiffness vs. weight
- Experience shows the importance of safety systems to avoid crankcase explosions is more present than ever before





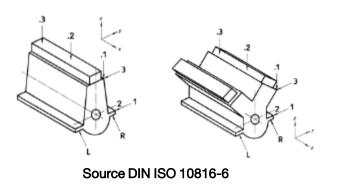
## **Condition monitoring approach**

### Development of mechanical failures over time

Increasing prevention corridor with additional condition monitoring

- Detection of mixed lubrication in journal bearings
- Detection of vibration anomalies







## ACCOMOS sensor



#### Motivation

- 3-axis acceleration sensor monitors mechanical vibrations at non-rotating parts in accordance with **DIN ISO 10816-6**
- Monitors permissible limit values of internal combustion engines having more than 100 kW but also other engine components, generators...
- Mounting with extra-strong magnets allows installation within minutes
- Tested in accordance to DNVGL-CG-0339, CE conformity, IATA certificate, risk assessment in accordance to DIN EN ISO 12100





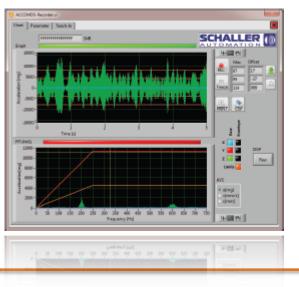


**Motivation** 

Principle

•



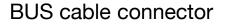

operating conditions in an early stage of occurrence

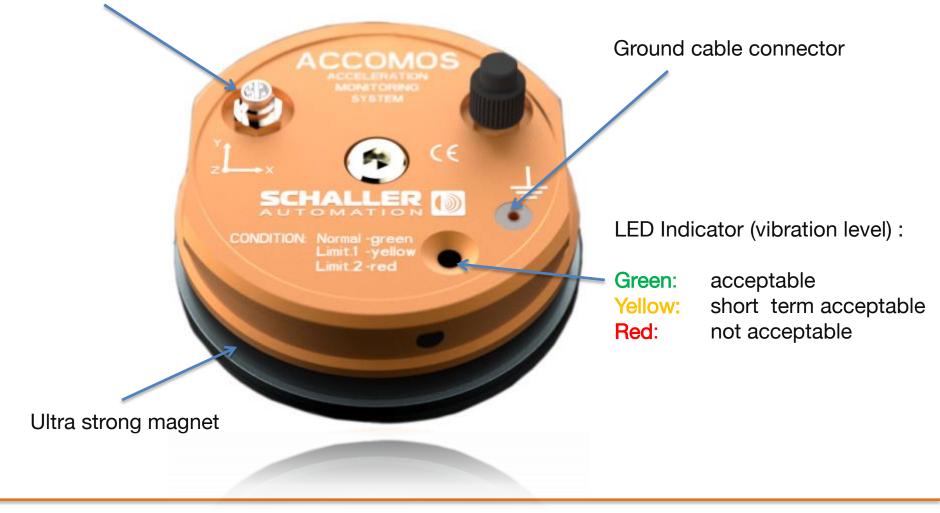
Effective solution for condition monitoring of vibration to detect critical

• Monitor your engine according DIN ISO 10816-6

COMOS





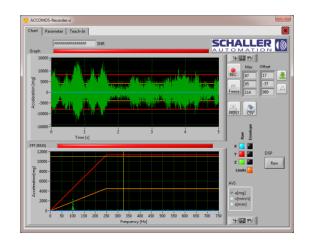





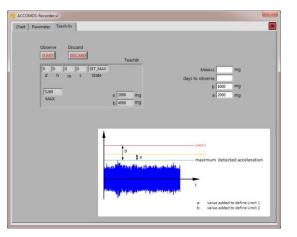


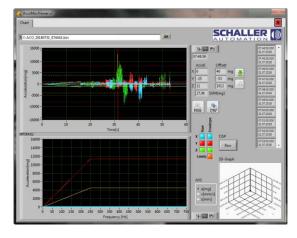








## **ACCOMOS Version 2 Software**


#### Software features/options

- Software has following features/options :
  - Life signal visualization
  - Teach In function
  - Data viewer (to analyze recorded data)



Life signal screen

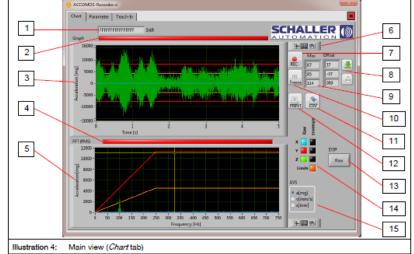




Teach In screen

Data viewer



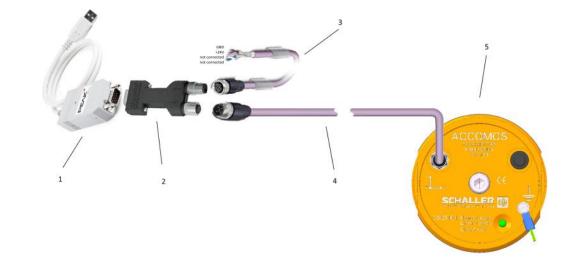



CONFIDENTIAL

#### Software

With the software you have following possibilities :

- System indicator (2) : R/Y/G ٠
- Upper screen : Live signal of vibration and the limits (3)
- Lower screen : FFT Frequency spectrum of the • sensor signal as square average (5)
  - To identify source of vibration •
- Possibility to record the signal (7)






YOU AND YOUR ENGINE

#### Benefits

- Live-Monitoring of Deviation in normal vibration of the machine/engine
- One sensor for 3 Axes
- Permanent Installation within minutes via ultrastrong magnets
- Suitable to monitor your engine according **DIN ISO 10816-6**
- RS 485 or CAN Bus

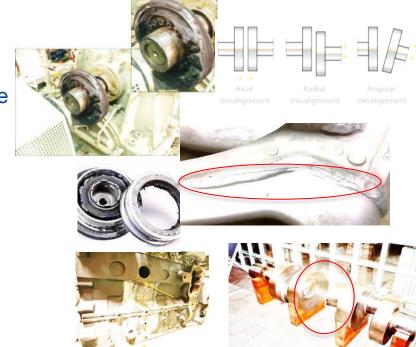






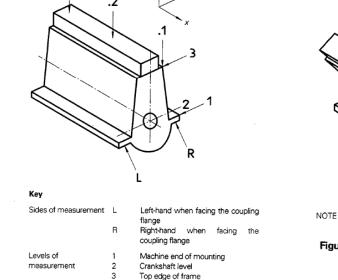
### Multiple application

- On engines test cell for validation purpose
- Validation vibration profile during FAT, according DIN ISO 10816-6 or classification society
- Monitor the engine during sea trial
- Monitor engine vibration profile during service visit
  - Control profile in accordance to FAT results
  - Define if potential failure
- For end-user monitor engine after important engine work
- For fleet owner and engine maker remote engines  $\rightarrow$  4.0 industries





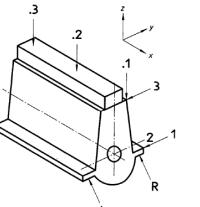

### Multiple source of vibration

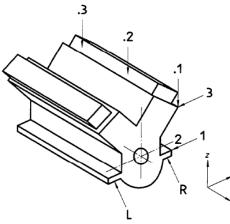

Monitor your engine/machine to identify a vibration deviation before severe damage

- Cracks in engine frame
- Coupling damage
- Misalignment e.g. between engine and machine
- Engine/Machine Baseplate cracks
- Breaking Base dampers
- Many more failures linked to oscillating forces

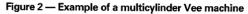







### Installation rule


The installation of ACCOMOS is based on DIN ISO 10816-6

1 sensor per engine at critical place. Defined based DIN ISO.





NOTE - See figure 1 for key.

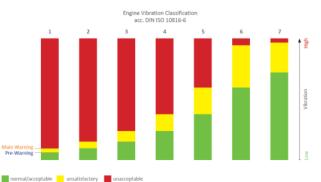


Source: DIN ISO 10816-6



#### Maximum values of overall vibration Machine vibration classification numb Vibratio red on the machine s severity 1 2 3 4 5 6 7 Velocity Acceleration grade mm/s (r.m.s.) m/s2 (r.m.s.) Evaluation zones um (r.m.s.) 17.8 1.12 1.76 1,8 A/B A/B 2.8 44.8 2.82 4.42 A/B 4.5 A/B A/B 4.46 7.01 7,1 С A/B 113 7.07 11.1 A/B 11 С 17,6 18 С 283 17.8 27.9 28 С 28.2 44.2 45 D С 446 70.1 D 71 D С D 112 D С 176 D 180 D Key to zones

#### Table A.1 — Vibration classification numbers and guide values for reciprocating machine


The vibration of newly commissioned machines would normally fall within this zone.

A: B: Machines with vibration within this zone are normally considered acceptable for long-term operation.

Machines with vibration within this zone are normally considered unsatisfactory for long-term continuous operation. Generally, the machine may be operated for a limited period in this condition until a suitable opportunity arises for remedial action.

Vibration values within this zone are normally considered to be of sufficient severity to cause damage to the machine

NOTE -- Vibration values for reciprocating machines may tend to be more constant over the life of the machine than for rotating machines Therefore zones A and B are combined in this table. In future, when more experience is accumulated, guide values to differentiate bety and B may be provided.



SCHALLER AUTOMATION SAFETY FOR YOU AND YOUR ENGINE

Figure 1 — Example of a vertical in-line machine

Coupling end

Mid-machine

Free end of machine

CONFIDENTIAL

.1

.2

.3

Measurement points

related to machine

length

#### Technical data

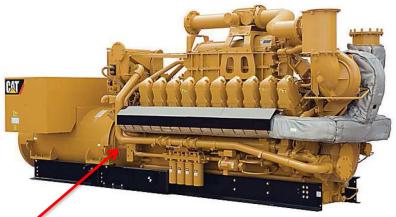
| Power supply      | 9-36 VDC                               |
|-------------------|----------------------------------------|
| Consumption       | Max. 110 mA                            |
| Temperature range | -25°C to +85°C                         |
| Measure range     | +/- 16 000 mG                          |
| Frequency range   | 0-750 Hz (1500Hz for CAN BUS possible) |
| Sensitivity       | 4 mG                                   |
| Data transfer     | Digital via RS485 or CAN               |
| Weight            | 400g                                   |
| Diameter          | 89,5 mm                                |





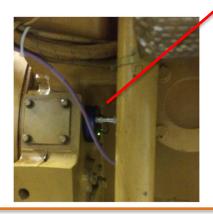
Scope of delivery



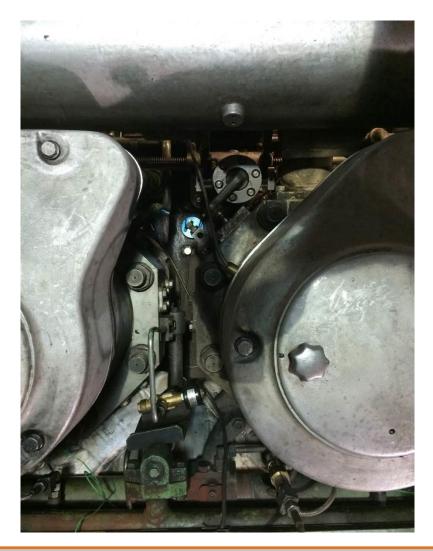


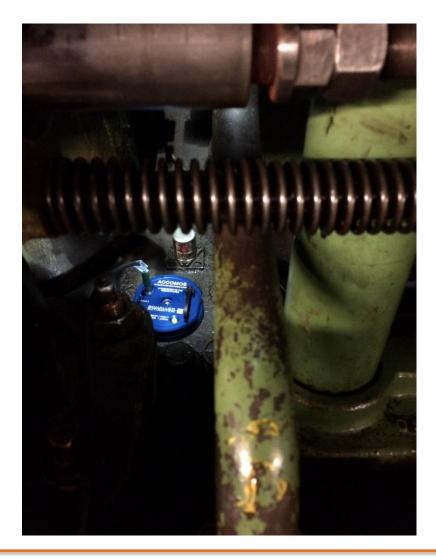



-72-




- Customer : City of Saarbrücken (D)
- Engine type : CAT G3520C
- Fuel type : Gas (coal gas)
- Application : Powergen for load
- Installation since : 12/2017
- Working hours : 8300 hours w/o issues





CAT G3520C













CONFIDENTIAL

#### Installation example

Monitoring of vibration profile on 4-stroke engine test bench.









### Installation example

Monitoring of 4 engines (4-stroke) on a ferry in Europe









### Installation example

Monitoring of vibration profile on 4-stroke engine, power plants.



Power plant Bliestal (D)

**CONFIDENTIAL** 



Power plant Saarbrücken (D)



Marine college Flensburg (D)





