

11th CIMAC CASCADES in Wuxi, China

The latest technologies of J-ENG's UE Engine, toward higher efficiency

2019 10 11

2

CONTENTS

2019 10 11

Company profile

Naming rule

© 2019 Japan Engine Corporation

WMS-F854

2019 10 11

UE Engine Production Records of LSII / LSE / LSH

As of Aug, 2019

Engine type	Ordered	Delivered	1st set in service
85 LSC	7	7	1993.12
85 LSII	50	50	1992. 7
75 LSII	20	20	1988. 4
60 LSII	201	201	1995. 8
50 LSII	243	243	1994. 2
43 LSII	26	26	2004. 6
37 LSII	19	19	2000. 9
33 LSII	139	124	1994. 6
80 LSE	2	2	2013. 6
68 LSE	15	15	2003. 5
60 LSE	35	32	2008. 6
52 LSE	30	30	2001. 9
50 LSE	18	18	2007. 2
45 LSE	262	251	2008.12
35 LSE	14	7	2014. 6
33 LSE	34	29	2014.12
50 LSH	41	21	2015. 8
Total	1156	1095	-

UEC42LSH is the successor of UEC45LSE, and developed by using proven UEC50LSH technologies.

© 2019 Japan Engine Corporation

WMS-F854

UEC42LSH-Eco Development concept

2019 10 11

- "UEC42LSH" is a successor to UEC45LSE engine, which is the UE's best seller engine ordered over 260 sets so far.
- Based on comprehensive market research, the optimal rating is set for Handysize BC, Small CT, etc. for the domestic and overseas shipyards. Especially for Handysize BC's rating field, 6UEC42LSH, which has an advantage in terms of vibration, can be applied comparing to 5cyl. (50cm bore) engine.
- UEC42LSH-Eco-D3 can achieve the lowest SFOC in the world.
- Long time slow steaming can be easily operated. (Continuous operation is possible down to 20% load without any load up)
- **Compact engine size and weight.**
- > Promote the digitalization in future.
- MGO mono-fuel engine "UEC42LSJ" also joins in the UE's lineup.

UEC42LSH-Eco Rating Field

WMS-F854

UEC42LSH-Eco Main Particulars

Model		6UEC42LSH-Eco-D3	6UEC45LSE-Eco-B2	5UEC50LSH-Eco-C3
Bore	[mm]	420	450	500
Stroke	[mm]	1,930	1,930	2,300
Stroke/Bore	-	4.6	4.3	4.6
Output	[kW]	7,560	8,280	8,900
Engine speed	[rpm]	118	128	108
Pme	[bar]	24.0	21.1	21.9
Piston speed	[m/s]	7.6	8.2	8.3
SFOC @100%Load				
Tier2 Mode	[g/kWh]	164	169	164
Tier3 Mode	[g/kWh]	165.6 (LP-EGR)	U 70 170.7 (LP-EGR)	165.6 (LP-EGR)

The lowest SFOC engine in the world

WMS-F854

UEC42LSH-Eco Comparison of Fuel oil consumption

6UEC42LSH-Eco-D3 can achieve much lower fuel oil consumption.

WMS-F854

UEC42LSH-Eco Comparison of Dimensions

Model		6UEC42LSH-Eco-D3	6UEC45LSE-Eco-B2	5UEC50LSH-Eco-C3
Engine length (Catalogue figure)	[mm]	5,646 (Lcc760)	5,894 <mark>.2%</mark> (Lcc792)	5,560 (Lcc870)
Piston overhaul	[mm]	8,850 (St1930)	8,860 (St1930)	10,050 (St2300)
Crank shaft center	[mm]	1,000	1,000	1,190
Bedplate width	[mm]	2,800 -6	<mark>.7%</mark> 3,000	3,350
Weight (without EGR)	[ton]	170 -9	<mark>.1%</mark> 187	194

Compact engine size and weight

WMS-F854

UEC42LSH-Eco Comparison of Dimensions

WMS-F854

15

CONTENTS

Design process -Utilization of MBD (Model Based Development) Structural Conceptual **Functional** Layout Design Design Design Design Design **3D CAD / CAE Performance Development technologies** accumulated over 60 years. evaluation Advanced design using analysis simulation. Utilizing advanced CAE based on the latest technologies 16

WMS-F854

Stiffness and weight of these structures are optimized by FEM and EHL analysis.

Moving parts

Achieve lower fuel oil consumption by optimization of moving parts weight and reduction of mechanical loss.

<u>Combustion chamber</u> <u>-Reduction of thermal load, thermal stress</u>

The strength and heat condition of combustion chamber are analyzed by FEM and Thermal analysis.

*A-ECL : <u>A</u>dvanced <u>E</u>lectronically <u>C</u>ontrolled <u>L</u>ubricating system 2019 10 11 19

FEM model

WMS-F854

© 2019 Japan Engine Corporation

Application of "JUMP" technology

Concept of JUMP

J-ENG Unique Marine Power

Solution to three environmental issues of NOx, SOx, EEDI(CO2) simultaneously

UEC-LSJ -Environmental impact reduction engine

Water Injection pump Schematic diagram of water injection system

Insert water in fuel injection valve during standstill period of injection at each cycle
Fuel and water can be injected by layers according to actuation of fuel pump

© 2019 Japan Engine Corporation

WMS-F854

Environmental impact reduction engine "UEC-LSJ"

Technical features of "UEC-LSJ"

Japan Engine Corpo

Realize low FOC meeting with NOx regulations by comprehensive UE engine technology and mixture of existing technology

© 2019 Japan Engine Corporation

25

CONTENTS

UEC42LSH-Eco Conclusion

- The latest type of UE engine, UEC42LSH-Eco, is being developed to meet worldwide needs and will contribute to ship owners, ship operators and shipyards to cut operating costs and installation cost.
- UEC42LSH-Eco is being designed on the basis of well-proven conventional UE engines and with further improvements.
- Experiences of excellent operating condition of in-service engine will be fed back to new buildings.
- > UEC42LSH-Eco is ready for complying with IMO-NOx Tier III regulation.
- The first "UEC42LSH-Eco" will be manufactured in December 2020 and tested and launched soon.

Thank you

Contact:

Hideo Okamura

Japan Engine Corporation

1-1, Wadasaki-Cho 1-Chome, Hyogo-ku, Kobe

Hyogo Pref., 652-8585, Japan

Hideo.okamura@j-eng.co.jp

https://www.j-eng.co.jp/

© 2019 Japan Engine Corporation

2019 10 11